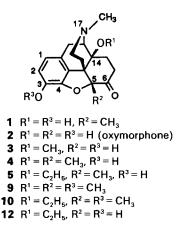
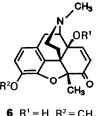
161. Synthesis and Biological Evaluation of 14-Alkoxymorphinans

Part 81)

14-Methoxymetopon, an Extremely Potent Opioid Agonist


by Helmut Schmidhammer*, Andrea Schratz, and Jörg Mitterdorfer


Institute of Organic and Pharmaceutical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck

(23.VII.90)

14-Methoxymetopon (= 5,14-O-dimethyloxymorphone; 4) and 14-ethoxymetopon (5) were synthesized from 14-hydroxy-5-methylcodeinone (6). In the AcOH-writhing test in mice, compound 4 was found to be *ca*. 20000 times more potent than morphine.

Introduction. - 5-Methyloxymorphone (= 14-hydroxymetopon; 1) was found to possess slightly less opioid-agonist properties than oxymorphone (2) [2]. When compared to the highly potent opioid agonist 14-O-methyloxymorphone (3) [3], compound 1

7
$$R^1 = R^2 = CH_3$$

8 $R^1 = C_2H_5$, $R^2 = CH_3$
11 $R^1 = CH_3$, $R^2 = H$

showed *ca.* 1/100th the antinociceptive potency in the AcOH-writhing test [2]. It was of interest if a 14-O-alkylation of 1 (to give compounds 4 and 5) would enhance its opioid agonist properties to a similar extent as a 14-O-alkylation of oxymorphone into compound 3 could [3].

¹) Part 7: [1].

Chemistry. – Starting material was 14-hydroxy-5-methylcodeinone (6) which is readily available from 5-methylthebaine [2] [4]. Alkylation with either $(CH_3)_2SO_4$ or $(C_2H_5)_2SO_4$ gave the 14-alkoxy derivatives 7 and 8, respectively. Catalytic hydrogenation (to afford 9 and 10) followed by ether cleavage with 48% HBr solution yielded 14methoxymetopon (4) and 14-ethoxymetopon (5), respectively.

Compound 4 was synthesized also by an alternative route. Ether cleavage of 14methoxy-5-methylcodeinone (7) with 48% HBr solution afforded phenol 11 which was hydrogenated catalytically to give 4.

Pharmacology. – Compounds 4, 5, and 11 have been evaluated for antinociceptive potency in the AcOH-writhing test in mice [2] [5] [6]²). In this test, 14-methoxymetopon (4) was found to be ca. 20000 times more potent than morphine and 1500 times more potent than oxymorphone. 14-O-Methyloxymorphone (3), its analogue without 5-Me group, was 24 times less active.

14-Ethoxymetopone (5) showed less potency in the AcOH-writhing test – it was ca. 130 times less potent than its 14-MeO analogue 4. The 7,8-didehydro derivative 11 was ca. 500 times less active than compound 4 (see the *Table*).

Table. Antinociceptive Potencies of 4, 5, 11, and Reference Drugs in the AcOH-Writhing Test in Mice [2] [5] [6]			
Compound	ED_{50}^{a})	Compound	ED_{50}^{a})
4. UDr	0.0100	1. UD.,	53

Compound	ED_{50}^{a})	Compound	ED_{50}^{a})
4 · HBr	0.0199	1 · HBr	52
5 · HBr	2.7	12	1.23
11 · HBr	9.2	Oxymorphone	31
3 · HBr	0.48	Morphine sulfate	389

Discussion and Conclusion. – The observation that a 14-MeO group in *N*-methylmorphinan-6-ones enhances opioid agonist properties [3] was confirmed. 14-Methoxymetopon (4) was found to be an extremely potent compound, with a potency that is *ca*. 2600 times higher compared to its 14-OH counterpart 1 in the AcOH-writhing test. Thus, a 14-O-methylation of 14-hydroxymetopon (= 5-methyloxymorphone; 1) could significantly increase the opioid agonist properties.

14-Ethoxymetopon (5) was less potent than 14-methoxymetopon (4). A similar decrease in activity of a 14-EtO-substituted morphinans was found, when 14-O-ethyloxymorphone (12) was compared to 14-O-methyloxymorphone (3) [7]. Thus, the following order of increasing opioid agonist potency in 14-oxygenated N-methylmorphinan-6-ones was found: 14-OH < 14-EtO < 14-MeO.

We want to thank Alkaloida, Chemical Factory, H-4440 Tiszavasvári, Hungary, for the generous gift of thebaine and the Analytical Department of F. Hoffmann-La Roche AG, Basel, for elemental analyses.

²) This test was performed for us at the Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA, through the courtesy of Dr. J. D. Leander.

Experimental Part

General. See [2].

(-)-7,8-Didehydro-4,5 α -epoxy-3,14 β -dimethoxy-5 β ,17-dimethylmorphinan-6-one (= 14 β -Methoxy-5 β -methylcodeinone; 7). A soln. of 14-hydroxy-5-methylcodeinone (6; 8.1 g, 24.74 mmol) in 60 ml anh. DMF was cooled to 0–5°. NaH (1.1 g, 45.8 mmol) was added under N₂, and the resulting mixture was stirred for 15 min. Then (CH₃)₂SO₄ (3.0 ml, 31.69 mmol) was added in one portion, and stirring was continued at 0–5° for 30 min. Excess NaH was destroyed carefully with small pieces of ice, then the mixture was poured on 250 ml ice/H₂O. After extractions with CH₂Cl₂ (3 × 80 ml), the combined org. layers were washed with H₂O (3 × 50 ml) and brine, dried, and evaporated to yield 8.4 g of a slightly yellow crystalline residue. Treatment with boiling EtOH gave 6.42 g (76%) of 7. An anal. sample was prepared by recrystallization of a small portion from EtOH. M.p. 201–203°, [α]₂²⁰ = -61.3 (c = 0.86, CHCl₃). IR (KBr): 1670 (CO). ¹H-NMR (CDCl₃): 6.84 (d, J = 10, 1 olef. H); 6.52 (s, 2 arom. H); 6.05 (d, J = 10, 1 olef. H); 3.76 (s, CH₃O–C(3)); 3.28 (s, CH₃O–C(14)); 2.42 (s, CH₃N); 1.70 (s, CH₃–C(5)). Anal. calc. for C₂₀H₂₃NO₄ (341.41): C 70.36, H 6.79, N 4.10; found: C 70.11, H 7.08, N 3.95.

(-)-7,8-Didehydro-4,5 α -epoxy-14 β -ethoxy-3-methoxy-5 β ,17-dimethylmorphinan-6-one $(= 14\beta$ -Ethoxy-5 β -methylcodeinone; **8**) was prepared by the same procedure using $(C_2H_5)_2SO_4$. Recrystallization from EtOH gave 56% of **8**. M.p. 186–188°. $[\alpha]_D^{20} = -22.4$ (c = 0.88, CHCl₃). IR (KBr): 1670 (CO). ¹H-NMR (CDCl₃): 6.77 (d, J = 10, 1 olef. H); 6.40 (s, 2 arom. H); 6.02 (d, J = 10, 1 olef. H); 3.79 (s, CH₃O); 2.41 (s, CH₃N); 1.68 (s, CH₃-C(5)); 1.15 (t, J = 6, CH₃CH₂O). Anal. calc. for C₂₁H₂₅NO₄ (355.43): C 70.96, H 7.09, N 3.94; found: C 70.87, H 7.25, N 3.93.

(-)-4,5 α -Epoxy-3,14 β -dimethoxy-5 β ,17-dimethylmorphinan-6-one (= 14 β -Methoxy-5 β -methyloxycodone; 9). A mixture of 7 (5.7 g, 16.69 mmol), 10% Pd/C (300 mg), and 150 ml of EtOH was hydrogenated at 20 psi and r.t. for 4 h. The catalyst was filtered off and the filtrate evaporated to give 5.58 g of a colorless crystalline solid which was treated with 10 ml boiling EtOH to yield 4.8 g of 9. Another 470 mg were obtained from the mother liquor. Total yield 5.27 g (92%). A portion of this material was recrystallized for analysis. M.p. 187–190°. $[\alpha]_{20}^{20} = -139.0$ (c = 0.82, CHCl₃). IR (KBr): 1720 (CO). ¹H-NMR (CDCl₃): 6.54 (s, 2 arom. H); 3.80 (s, CH₃O-C(3)); 3.26 (s, CH₃O-C(14)); 2.36 (s, CH₃N); 1.57 (s, CH₃--C(5)). Anal. calc. for C₂₀H₂₅NO₄ (343.43): C 69.95, H 7.34, N 4.08; found: C 69.86, H 7.60, N 3.90.

(-)-4,5 α -Epoxy-14 β -ethoxy-3-methoxy-5 β ,17-dimethylmorphinan-6-one $(= 14\beta$ -Ethoxy-5 β -methyloxycodone; 10) was prepared from 8 similary as described for 9. Recrystallization from EtOH gave 83% of 10. M.p. 165–167°. [α]_D²⁰ = -163.3 (c = 1.13, CHCl₃). IR (KBr): 1720 (CO). ¹H-NMR (CDCl₃): 6.54 (s, 2 arom. H); 3.83 (s, CH₃O); 2.32 (s, CH₃N); 1.61 (s, CH₃-C(5)); 1.24 (t, J = 6, CH₃CH₂O). Anal. calc. for C₂₁H₂₇NO₄ (357.45): C 70.56, H 7.61, N 3.92; found: C 70.38, H 7.72, N 3.92.

(-)-4,5 α -Epoxy-3-hydroxy-14 β -methoxy-5 β ,17-dimethylmorphinan-6-one Hydrobromide (= 14 β -Methoxymetopon Hydrobromide; **4** · HBr). A soln. of **9** (800 mg, 2.33 mmol) in 48 % HBr soln. (8 ml) was refluxed for 15 min and then evaporated to give a slightly pink foam. Crystallization from MeOH/Et₂O yielded 736 mg (77%) of **4** · HBr. Recrystallization of a small portion from MeOH/Et₂O afforded anal. pure material. M.p. 265–271°. $[\alpha]_{D}^{20} = -142.1 \ (c = 0.96, DMF)$. IR (KBr): 3420, 3360 (OH, ⁺NH); 1720 (CO). ¹H-NMR ((D₆)DMSO): 9.30, 8.95 (2 br. s, OH, ⁺NH); 6.58 (s, 2 arom. H); 3.38 (s, CH₃O); 2.88 (d, J = 4, CH₃N⁺); 1.49 (s, CH₃-C(5)). Anal. calc. for C₁₉H₂₃NO₄ · HBr (410.31): C 55.62, H 5.90, N 3.41; found: C 55.37, H 5.80, N 3.36.

(-)-4,5 α -Epoxy-14 β -ethoxy-3-hydroxy-5 β ,17-dimethylmorphinan-6-one Hydrobromide (= 14 β -Ethoxymetopon Hydrobromide; **5** · HBr) was prepared from 10 similarly as described for **4** · HBr. Recrystallization from acetone afforded 75% of **5** · HBr. M.p. > 325° (dec.) [α]₂₀²⁰ = -105.9 (c = 0.83, EtOH). IR (KBr): 3350, 3180 (OH, ⁺NH), 1720 (CO). ¹H-NMR ((D₆)DMSO): 8.56 (br. *s*, OH, ⁺NH); 6.55 (*s*, 2 arom. H); 2.95 (*d*, J = 4, CH₃N⁺); 1.47 (*s*, CH₃-C(5)); 1.30 (t, J = 6, CH₃CH₂O). Anal. calc. for C₂₀H₂₅NO₄ · HBr (424.34): C 56.61, H 6.18, N 3.30; found: C 56.68, H 6.23, N 3.26.

(-)-7,8-Didehydro-4,5 α -epoxy-3-hydroxy-14 β -methoxy-5 β ,17-dimethylmorphinan-6-one Hydrobromide (= 14 β -Methoxy-5 β -methylmorphinon Hydrobromide; 11 · HBr). A soln. of 7 (1.26 g, 3.7 mmol) in 48 % HBr soln. (4 ml) was refluxed for 25 min and then evaporated. Crystallization of the residue (1.9 g of a brownish foam) from MeOH/Et₂O afforded 1.18 g (78 %) of 11 · HBr. A small portion of this material was recrystallized from MeOH/ Et₂O for analysis. M.p. 148–150°. [α] $_{D}^{D}$ = -43.5° (c = 0.75, DMF). IR (KBr): 3420, 3360 (OH, ⁺NH); 1675 (CO). ¹H-NMR ((D₆)DMSO): 9.30 (br. s, OH, ⁺NH); 7.13 (d, J = 10, 1 olef. H); 6.54 (s, 2 arom. H); 6.25 (d, J = 10, 1 olef. H); 3.34 (s, CH₃O); 2,97 (d, J = 4, CH₃N⁺); 1.54 (s, CH₃-C(5)). Anal. calc. for C₁₉H₂₁NO₄ · HBr · 0.2 H₂O (410.09): C 55.40, H 5.48, N 3.40; found: C 55.38, H 5.44, N 3.40.

Compound 11 · HBr (130 mg, 0.32 mmol) was hydrogenated as described for the formation of 9. Yield: 80 mg (76%) of 4 · HBr. M.p., IR, and ¹H-NMR: identical with those of an authentic sample.

Pharmacology. See [2] [5] [6].

REFERENCES

- [1] H. Schmidhammer, E. Ganglbauer, M. Mitterdorfer, J. M. Rollinger, C. F.C. Smith, *Helv. Chim. Acta* 1990, 73, 1779.
- [2] H. Schmidhammer, J.B. Deeter, N.D. Jones, J.D. Leander, D.D. Schoepp, J.K. Swartzendruber, *Helv. Chim. Acta* 1988, 71, 1801.
- [3] H. Schmidhammer, L. Aeppli, L. Atwell, F. Fritsch, A. E. Jacobson, M. Nebuchla, G. Sperk, J. Med. Chem. 1984, 27, 1575.
- [4] H. Schmidhammer, F. Fritsch, W.P. Burkard, L. Eggstein-Aeppli, F. Hefti, M.I. Holck, Helv. Chim. Acta 1988, 71, 642.
- [5] J. D. Leander, P. D. Gesellchen, L. G. Mendelsohn, Pharmacol. Biochem. Behav. 1988, 29, 351.
- [6] D. M. Zimmerman, J. D. Leander, J. K. Reel, M. D. Hynes, J. Pharmacol. Exp. Ther. 1987, 241, 374.
- [7] H. Schmidhammer, R. Krassnig, Sci. Pharm. 1990, 58, 255.